Towards a Web of Patterns

Jens Dietrich, Chris Elgar

Massey University, Institute of Information Sciences and Technology,
Palmerston North, New Zealand
{J.B.Dietrich,C.M.Elgar}@massey.ac.nz

Abstract. Design patterns have been used successfully in recent years
in the software engineering community in order to share knowledge about
the structural and behavioural properties of software. There is a growing
body of research in the area of design pattern detection and design re-
covery, requiring a formal description of patterns which can be matched
by tools against the software that is to be analysed.

We propose a novel approach to the formal definition of design patterns
that is based on the idea that design patterns are knowledge that is
shared across a community and that is by nature distributed and in-
consistent. By using the web ontology language (OWL) we can define
design patterns and a couple of related concepts such as pattern partici-
pant, pattern refinement, and pattern instance. We discuss the respective
ontology and give examples of how patterns can be defined using this on-
tology. We present a prototype of a Java client that accesses the pattern
definitions and detects patterns in Java software, and analyse some scan
results. This leads to the discussion on pattern instances and some de-
rived concepts useful for the analysis of scan results.

1 Introduction

Design patterns represent knowledge shared within the software engineering com-
munity - there are experts publishing design patterns such as the GangOf4 group
[9] or Beck [2], and there are people consuming patterns in various ways, for in-
stance by instantiating a pattern in order to solve a certain design problem, or by
trying to recognise a pattern in order to comprehend the structure of a complex
piece of software. As the popularity of design patterns has grown the body of
knowledge about patterns has reached an extent that makes it difficult to find
and select good design patterns. The question arises what a good design pattern
is. The pragmatic answer is: one which the community thinks is good. This is
determined either by the level of usage, or by whether the pattern author is a
trusted expert in the field. Obviously, this is the case for the GangOf4. Other
ways to establish trust might be associations with certain vendors, publishers,
or online communities publishing or endorsing particular patterns.

If different communities talk about a certain pattern X then there is no
guarantee that they mean the same thing. For instance, lets consider the rather
simple Iterator pattern. According to the original definition in [9] an Iterator
has four methods with the following (informally defined) semantics: a method to

retrieve the current element, a method to test whether there are more elements,
and methods to retrieve the first and the last element. In Grand’s definition [10]
the methods to fetch the first and the last element have been dropped, making
it consistent with popular Java implementations of Iterator (the Iterator and
the Enumeration interfaces in the java.util package). As many programmers
learn about the Iterator pattern by generalising from a particular pattern im-
plementation (lets say, in Java) they might expect another method to be part of
the Iterator pattern: an optional! method to remove the current element from
the underlying container. One might also argue that an Iterator should have a
release or close method. This is useful to invoke clean up operations if the
iterator has to fetch objects into memory on demand?.

The bottom line is that there are multiple, slightly different versions of It-
erator and other patterns used within the community and that there are good
reasons for this. This may lead to communication problems that can be easily
avoided by adding contextual information whenever we refer to a particular pat-
tern. This problem can be addressed by using unique names for patterns, such
as unique resource identifiers (URIs) composed of a scope (the URL referring
to a pattern author, book, or web site) and a pattern name. This allows us
to distinguish easily between the GangOf4 Iterator and Grand’s Iterator. Still,
there will be inconsistencies in how a pattern is used in context. For instance,
one author might consider a pattern to be a creational pattern while another
author might reject this. But knowledge about best practice design is community
knowledge and as such it is distributed and inherently inconsistent. The software
engineering community is accustomed to deal with this situation - source code
management systems support the sharing of distributed, formalised knowledge
(in particular source code, but also configuration files, data files, and documen-
tation) and there is tool support to handle arising inconsistencies (merge and
diff tools). However, there are many more artefacts which the community shares
as well, but for which a similar infrastructure is still missing. This includes not
only design patterns, but also anti patterns, refactorings, and component meta
data.

Here we see a great potential for adopting semantic web technology, in partic-
ular the resource description framework (RDF) [17] and web ontology language
OWL [14]. The first version of a pattern description language using OWL, includ-
ing the design pattern ontology, has been introduced in [4]. In the next section,
we discuss this ontology. We extend the ontology presented in [4] by adding pat-
tern refinement. In section 3, the design of a client for the Java programming
language is discussed. We also elaborate on how this relates to the semantics
of the concepts defined in the ontology, and introduce the concept of a design
pattern instance. In section 4 we discuss several variants of the concept of pat-
tern instance motivated by scan results obtained with our Java client. Finally,

! The semantic of optional is defined by throwing a runtime exception indicating that
the method is not supported.

% This functionality is typical for database cursors. Note that Cursor is used as syn-
onym for Iterator in [9].

we compare our approach with related work and outline further directions of
research.

2 Publishing Design Patterns

Existing design pattern catalogues such as the GangOf4 book [9] use a combi-
nation of narrative descriptions and formal models like OMT (object-modelling
technique) or UML (unified modelling language) diagrams to define design pat-
terns. This is clearly appropriate if the aim is to support software engineers
to understand and apply patterns. However, this is not sufficient to underpin
tools. The main use case that requires tools is automated design recovery, i.e.
recognising patterns in a given program. There is a growing body of research
in the area of formal design pattern description languages and detection tools,
including [8,12,3,13].

In [4] we have proposed using the web ontology language OWL for this pur-
pose. This allows us to meet the following design objectives:

— A formal, machine processable pattern definition language.

— Distributed knowledge representation without a single point of control but
facilitating shared terminologies.

— A modular design.

— Meta data annotation that allows reasoning about pattern descriptions, in
particular to facilitate the selection of patterns.

— A format that is compatible with standard web technologies (can be deployed
using standard http servers and can be detected and indexed by existing
search engines).

RDF/OWL can be used to meet these objectives. Due to the formal semantics
OWL has [15] it is safe to reason about OWL ontologies. Standard vocabularies
such as Dublin Core [6] can be used to attach meta data to pattern definitions.
Members of the community can easily publish patterns using a rather small set
of basic concepts defined in a central ontology, and these descriptions can be
published on standard http servers where they can be found by search engines
like Google. Alternatively, maintained directories are possible which contain lists
of URLSs pointing to pattern descriptions.

The foundation of our framework is the object-oriented design ontology in
which the concepts needed to describe design patterns are defined. These con-
cepts include Pattern, PatternCatalogue, and Participant. Participant is the
OWL class representing artefacts which are part of a design pattern. In par-
ticular, this includes classes and their members (constructors, fields, and meth-
ods). The respective OWL classes have a “Template” postfix indicating that their
instances are variables for the respective type of objects. For instance, Abstract-
Factory.ConcreteFactory is a participant of the AbstractFactory pattern. It is
not a (Java or Smalltalk) class but a placeholder for such a class, i.e. a typed
variable. We use the OWL class ClassTemplate to represent this kind of ob-
ject. The ontology also defines properties of classes and their relationships. The
current version of the ontology is deployed at:

http://www-ist.massey.ac.nz/wop/20050204/wop.rdf-xml

The following script is part of the ontology which has been created using the
Protégé ontology editor [16]:

<rdf:Description rdf:about="#Pattern">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
</rdf :Description>

<!-- participants -->

<rdf:Description rdf:about="#Participant">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
</rdf :Description>

<!-- classes -->

<rdf:Description rdf:about="#ClassTemplate'>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
<rdfs:subClass0f rdf:resource="#Participant"/>

</rdf :Description>

<!-- subpattern relationship -->

<rdf:Description rdf:about="#isSubPatternOf">

<rdfs:domain rdf:resource="#Pattern"/>

<rdfs:range rdf:resource="#Pattern"/>

<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#0bjectProperty">

<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#TransitiveProperty"/>

</rdf :Description>

<!-- classes participating in a pattern -->

<rdf:Description rdf:about="#participants">

<rdfs:range rdf:resource="#ClassTemplate"/>

<rdfs:domain rdf:resource="#Pattern"/>

<rdf:type rdf:resource=
"http://www.w3.0rg/2002/07/owl#0bjectProperty"/>

</rdf :Description>

The concepts defined in the ontology can then be used to formally define design
patterns. This is done using a different physical resource (i.e., the respective
OWL file is deployed using a different URL), the owl:import directive can be
used to resolve references to the ontology. This does not necessarily contradict the
no single point of control objective as the current ontology serves as a reference
of how such an ontology might look. Other ontologies could be possible as well,
and OWL itself offers a range of feature to express the relationships between
different ontologies (for instance, to declare synonyms).

We use the AbstractFactory pattern to discuss some important points of
the pattern definition, the complete definition is available on the wop web site

[24] either as plain file or as generated OWLDoc report. The definition of the
AbstractFactory has a unique URL that is also the URL of the OWL file:

http://www-ist.massey.ac.nz/wop/20050204/AbstractFactory.rdf

In the header of the file, various name space prefixes are defined and the ontology
language version used (OWL1.0) is declared. An owl:import directive imports
the ontology:

<owl:imports rdf:resource=
"http://www-ist.massey.ac.nz/wop/20050204/wop.rdf -xml" />

Then the pattern itself and its participants are defined. This is done by instanti-
ating the imported OWL classes and making assertions about properties of this
instances and their relationships.

<!-- Abstract Factory Pattern Definition -->

<rdf:Description rdf:about="#AbstractFactory'>

<rdf:type rdf:resource="#Pattern"/>

<participants rdf:resource="#AbstractFactory.AbstractFactory"/>
<participants rdf:resource="#AbstractFactory.ConcreteFactory"/>
<participants rdf:resource="#AbstractFactory.AbstractProduct"/>

<dc:date rdf:datatype="xmls:string">1995</dc:date>
<dc:publisher rdf:datatype="xmls:string">
Addison-Wesley
</dc:publisher>
<dc:creator rdf:datatype="xmls:string">
Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides (Gang of Four)
</dc:creator>

</rdf :Description>
<!-- Concrete Product Participant Definition -->
<rdf:Description rdf:about="#AbstractFactory.ConcreteProduct'>
<rdf:type rdf:resource="#ClassTemplate"/>
<isSubclass0f

rdf :resource="#AbstractFactory.AbstractProduct"/>
<isAbstract>concrete</isAbstract>
</rdf :Description>

Note that meta data annotations are attached to the pattern definition. For this
purpose the Dublin Core [6] vocabulary is used to make assertions about the
pattern. This includes information about the creators, the publisher, and the
time of publication. This information can then be used by clients which have
found multiple pattern descriptions (for instance, by using a search engine) to

compare and select patterns. By using the common DC vocabulary we can ensure
that the clients understand these annotations. The respective rules used can be
written in a declarative manner, for instance by using a rule markup language
such as RuleML [18]. We cannot necessarily expect that all meta information is
explicitly attached to patterns, often these assertions have to be harvested from
contextual information. For instance, information about the creator might only
be considered as valid if it is consistent with a certified digital signature which
has been used to sign the pattern definition, or if the pattern definition has been
loaded from a trusted URL.

While, for space reasons, we cannot discuss the entire ontology in full detail,
we want to give a high-level overview: the ontology defines patterns, pattern cat-
alogues, and various types of participants. This includes OWL classes like Class-
Template, FieldTemplate, MethodTemplate, and RelationshipTemplate. These
participants have properties and relationships which reflect the use of the respec-
tive concepts in object oriented programming: class templates can be abstract,
have super class templates, and contain member templates (fields, constructors,
and methods). The ontology does not support advanced features such as inner
classes, annotations, static intializers, class extensions etc, these concepts could
be defined in an extension of the ontology that could then be used to define more
programming language specific design patterns that require those features. This
of course would narrow the scope of these pattern definitions by excluding pro-
gramming languages not supporting these features. Other types of relationships
usually not available in standard OO modelling languages include the actual
return type and method calls method relationships.

The ontology contains the isSubPatternOf relationship between patterns that
represents pattern refinement [1,23]. The meaning of this relationship is defined
as follows: a pattern A is a subpattern of a pattern B if all participants of A
can be mapped to participants of B (but B may have additional participants)
and the mapping retains all of there relationships and properties (but might
add new relationships or properties). In other terms, refinement means that a
monomorphism, and injective structure preserving mapping between two pat-
terns, exist. Multiple inheritance is supported, i.e., a pattern can be a direct
subpattern of more than one other pattern. This requires a mapping between
participants inherited from different parents. We use an example to discuss this.
The Visitor pattern is used to traverse data structures such as lists, trees, and
multi dimensional structures. On the other hand, the Composite pattern defines
such a data structure: a tree built from container and component nodes. The
CompositeVisitor is a visitor traversing the composite tree. Both patterns have
different participants which have to be identified within the context of the com-
mon sub pattern. The visited element (from Visitor) is the component defined
in the Composite pattern. That is, we have the following join condition for the
Element participant:

1. CompositeVisitor.Element = Visitor.Element
2. CompositeVisitor.Element = Composite.Component

The following listing shows the relevant parts of the CompositeVisitor definition
(the DC annotations are skipped).

<!-- CompositeVisitor Pattern Definition -->
<rdf:Description rdf:about="#CompositeVisitor">
<rdf:type rdf:resource="#Pattern"/>
<isSubPattern0f rdf:resource="#Visitor"/>
<isSubPattern0f rdf:resource="#Composite"/>
<participants rdf:resource="#CompositeVisitor.Element"/>
<participants
rdf :resource="#CompositeVisitor.ConcreteElement"/>
<rdf:Description rdf:about="#CompositeVisitor.Element">
<rdf:type rdf:resource="#ClassTemplate"/>
<inheritedFrom rdf:resource="#Visitor.Element"/>
<inheritedFrom rdf:resource="#Composite.Component"/>
</rdf :Description>
<rdf:Description
rdf:about="#CompositeVisitor.ConcreteElement">
<rdf:type rdf:resource="#ClassTemplate"/>
<inheritedFrom rdf:resource="#Visitor.ConcreteElement"/>
<inheritedFrom rdf:resource="#Composite.Composite"/>
</rdf :Description>

Note that it is necessary to redefine the properties and relationships between
the participants with inheritance mappings - this can be inferred by applica-
tions based on the given semantics of isSubPatternOf relationship. Multiple in-
heritance can lead to conflicts, for instance if one class template is “abstract”
according to a statement inherited from parent 1 and “concrete” according to
a statement inherited from parent 2. There is no formal mechanism to prevent
these inconsistencies from occuring, however, tools could be used to verify that
the inheritance relationships are consistent. Certain inconsistencies are accept-
able, for instance inherited Dublin Core annotations such as DC:description for
participants.

We call a design pattern basic if it does not contain isSubPatternOf rela-
tionships, and derived otherwise.

3 Instantiating Patterns

The main motivation for using OWL was to have a network centric, machine
processable definition of design patterns. The structure of a client is relatively
simple: it has to use an http client to connect to a pattern server, download and
scan the patterns, translate then into constraints, and resolve these constraints
with respect to the program to be analysed. A prototype for the Java language
has been implemented [24] and released under the GNU General Public License

(GPL). Finding pattern instances is mainly a matter of instantiating the vari-
ables in the pattern description. Each pattern description can be mapped to a
(first order logic) derivation rule as follows:

Basic Pattern to Rule Transformation

1. Variables. For each participant (i.e., instance of a class subclassing Par-
ticipant) that occurs in the pattern definition, a variable symbol is intro-
duced. The name of the variable is the name of the participant. Examples®:
AbstractFactory. AbstractProduct, Composite.Component.

2. Predicates.

(a) For each participant class, a unary predicate is introduced. The predicate
name is composed by the prefix ”is” and the name of the type defined
in the ontology with the "Template” extension being omitted. Examples:
isClass, isMethod.

(b) For each property a binary predicate is introduced that associates the
object with the value of the property. The name of the predicate is the
name of the property in the ontology. Examples: visibility, isAbstract.

(c) For each relationship between participants a new binary predicate is
introduced associating the variables associated with the respective par-
ticipants. The name of the predicate is the name of the relationship
in the ontology. Examples: isSubclassOf, contains, declaredReturnType,
actualReturnType.

(d) For the pattern itself a predicate called pattern predicate is introduced.
The arity of this predicate equals the number of participants that occurs
in the pattern definition, the name of the predicate is the name of the
pattern in pattern definition. Examples: Singleton, AbstractFactory.

3. Pattern Rule. Each pattern P is transformed into a derivation rule as
follows:

(a) The head of the rule consists of the pattern predicate for P 2.(d) and a list
of terms containing a variable as defined in 1. for each participant that
occurs in the pattern definition. Examples: AbstractFactory (Abstract-
Factory.AbstractFactory, AbstractFactory.AbstractProduct, AbstractFactory.-
ConcreteFactory, ..).

(b) For each participant p that has the type T a prerequisite is added to
the rule body consisting of the predicate associated with T 2.(a) and
the variable terms associated with p (1.). Example: isMethod(Abstract-
Factory.AbstractFactory.Creator)

(¢) For each relationship r between participants pl and p2, a prerequi-
site is added to the rule body consisting of the predicate associated
with r (2.(c)) and the variables associated with the participants pl
and p2 (1.). Examples: isSubclassOf(AbstractFactory.ConcreteProduct,
AbstractFactory.AbstractProduct).

3 We use local names to simplify the examples. In general, fully qualified names have
to be used.

(d) For each property q of a participant p a prerequisite is added to the rule
body consisting of the predicate associated with q (2.(b)), the variable
term associated with p (1.) and the constant term consisting of the prop-
erty value. Example: isAbstract(AbstractFactory. AbstractProduct,’abstract”).

Example: the Abstract Factory pattern has the following participants (shortened
syntax - names spaces ommited) AbstractFactory, ConcreteFactory, Abstract-
Product, ConcreteProduct, AbstractFactory.Creator, ConcreteFactory.Creator.
The prerequisites of the pattern rule include:

© 00N OUE WD

—_
- O

isSubclassOf(ConcreteFactory, AbstractFactory)

isSubclassOf(ConcreteProduct, AbstractProduct)

contains(AbstractFactory, AbstractFactory.Creator)
contains(ConcreteFactAbstractFactory. AbstractProductory, ConcreteFactory.Creator)
declaredReturnType(AbstractFactory.Creator, AbstractProduct)
declaredReturnType(ConcreteFactory.Creator, AbstractProduct)
actualReturnType(ConcreteFactory.Creator, ConcreteProduct)
overrides(ConcreteFactory.Creator, AbstractFactory.Creator)
isAbstract(AbstractFactory, abstract”)
isAbstract(AbstractFactory.Creator, abstract”)

. isAbstract(AbstractProduct,’abstract”)

._.
o

Derived Pattern to Rule Transformation

A derived pattern definition P is transformed into a rule as follows:

1.

2.

Transformation into an atomic pattern P’.

(a) Recursion: first transform all parent patterns (patterns referenced in
statements using the isSubPatternOf relationship) into basic patterns.

(b) Create a copy P’of P.

(c) Replace all references to parent patterns in statements using isSubPat-
ternOf and inheritedFrom predicates by references to respective atomic
patterns which are the result of (a).

(d) Copy all statements about participants from the parents into the pattern
definition P’ , replacing the participants in the statements by partici-
pants defined in P’ according to the rules in the inheritedFrom state-
ments in P’.

(e) Remove all statements for the isSubPatternOf and inheritedFrom pred-
icates from P’.

The atomic pattern P’ is transformed into a rule as defined above.

Note that in this definition we assume that there are no circles in the graph
spawned by the pattern refinement relationship. This restriction can not be ex-
pressed in the ontology itself as OWL does not contain an appropriate expression.

For a given pattern P we use R(P) to denote the rule associated with this
pattern, we use A(P) to denote the head of R(P) and Var(P) the set of vari-
ables found in the pattern. For a given program Progr we use A(Progr) to
denote the set of artefacts found in the project. This includes classes, mem-
bers and relationships. We make no further assumptions on how these artefacts
are represented, usually unique names will be used. The pattern rule allows us
to formally define a pattern instance as follows: for a given pattern P and a
given Program Progr a pattern instance is a variable binding, i.e. a function
instance : Var(P) — A(Progr) .

This translation into a logical representation of the pattern is similar to
the pattern definitions found [12] and [7]. Standard logic programming technol-
ogy can be used to compute variable bindings of the formula. What makes the
structure of this rule particularly simple is the fact that it does neither contain
negated prerequisites nor function symbols (nested terms). The real challenge is
to find the fact base on which the rule for a given pattern operates which an
inference engine can use in order to compute bindings for the variables occurring
the pattern rule. Options include:

1. Reflection based analysis. OO languages usually have reflection APIs (ap-
plication programming interfaces) that allow the discovery of relationships
between artefacts that are part of the program at runtime. These artefacts
are represented as instances of special classes (such as java.lang.Class or
java.lang.reflect.Method in Java), and analysis tools can gather infor-
mation about the structure of the program by calling the methods of these
classes. The advantage of this approach is that at this point the classes have
been compiled and the artefacts have been linked together by the compiler.
The drawback is that analysis relies on syntactically correct classes, and that
reflection does not allow access to all the structural information needed.

2. Source code analysis. This is usually done by traversing an object model of
the source code (the abstract syntax tree AST) with visitors. Source code
analysis can reveal structural information that is usually not accessible with
reflection based analysis tools. This includes the actual return type of meth-
ods (as opposed to the declared return type that is implemented / subclassed
by the actual return type(s)), and call dependencies between methods.

3. Naming pattern analysis. If naming pattern have meaning then they can be
used for structural analysis. A good example when this is the case is the Java
Beans framework [11]. Naming patterns in (public) methods such as add<

ListenerType>(< ListenerType> listener) and remove < ListenerType>-

(< ListenerType> listener) indicate a one to many association between
the class in which these method are defined and the ListenerType. Although
this meaning is not enforced by the compiler, it underpins a wide range of
tools such as user interface builders.

4. Behavioral analysis. This approach is based on the idea to run and observe
the program. Technically this can be achieved by employing debugger APIs
or aspect oriented programming (injecting code analysis statements). It re-
lies on having suitable program entry points (such as main methods or test

cases) which instantiate all classes, invoke all methods and execute all ex-
pressions found in the program. This is suitable in a couple of situations:
to analyse programs when source code is not available, to analyse programs
without explicit type information in source code (such as Smalltalk), or to
analyse programs using reflection, aspects, or other dynamic programming
techniques. For instance, using behavioural analysis it is possible to obtain
the actual return type of a Java method containing the following line of code:
return (MyType)Class.forName(aClassName) .newInstance().

5. Documentation and annotation analysis. If the patterns have been doc-
umented, documentation analysis tools such as XDoclets can be used to
analyse this documentation.

Having a tool that can scan programs for instances of a given pattern requires
answering the question of whether the tool is complete and correct, i.e. whether
it finds all pattern instances and whether it finds only those. But since there is
no standard formal definition the concept of correctness is fuzzy and refers to
what the community and experts think is correct. In order to prove the partial
correctness and completeness of our approach we have taken examples available
in books on design patterns [10,20] and turned them into JUnit test cases for our
client. The shortcoming of this approach is obvious: while these examples are
appropriate for readers of the respective books they do not exhibit the complexity
of real world software. Scanning more complex packages leads to some interesting
questions which we discuss in the next section.

Using an ontology language such as OWL removes a lot of ambiguity from the
design pattern definitions. It does support some kind of reasoning about patterns
(for instance, applications can take advantage of the declared transitivity of
properties such as isSubPattern0f and isSubclassOf, and the consistency of
pattern definitions can be checked). However, the fact that we are using semantic
web technology does not guarantee that all concepts defined in the ontology have
a well-defined meaning. Part of it still has to be hardwired into applications
such as our client for Java. This includes that rules such as "when instantiating
patterns, class templates should be mapped to objects representing classes in the
target programing language” and “the relation isSubClassOf should only contain
pairs of classes (A,B) so that A is a subclass of B according to the rules in the
target programming language” are obeyed. While the constraints and the names
used in our ontology make it extremely likely that every application will use them
correctly, this is not directly enforced by the ontology based pattern definitions.
Therefore, the semantics of the web of patterns consists of three parts (using
Uschold’s terminology [22]) :

1. Explicit semantics intended for machine processing (reasoning about the
ontology, reasoning to establish trust).

2. Formal semantics for human processing (the participants and their properties
and relationships that have to be mapped to the programming language).

3. Informal semantics for human processing (further guidelines, such as com-
ments in the ontology, helping the programmer to write applications which
are consistent with the intended meaning of the concepts in the ontology).

In the existing client, reflection, naming pattern analysis is used in order to
accomplish a consistent and mainly automated mapping between the ontology
and the Java environment.

4 Normal and Aggregated Pattern Instances

Scanning non trivial software packages such as JDBC + MySQL driver imple-
mentation and AWT+Swing reveals some interesting facts. It turns out that
some of the pattern instances found are not correct, i.e. they are not intended
instances, although the meet the constraints in the formal pattern definition.
This indicates that there are at least some additional, implicit constraints. We
also know that the scanner is not complete as it does not build the complete
fact base. In particular, this is the case if reflection is used in the analysed code.
Thirdly, the number of correct instances found is still large, indicating that some
additional concepts have to be introduced to aggregate those.

To illustrate the the first case, consider the following example. Assume we
have a (Java) class that requires two different clone methods with different se-
mantics - deep and shallow copy. This is a rather common situation, and while
our class could implement Cloneable it needs to declare at least one more clone
like method. Lets assume this method is called copy. Let us further assume that
the class A is abstract and has an implementation class AImpl. The code might
look as follows:

public abstract class A {
public abstract A copy(Q);
}
public class AImpl extends A {
public A copy () {
A clone = new AImpl(Q);
// configure, set instance variables
return clone;

}
}
These classes and methods instantiate the AbstractFactory pattern as follows:
[Participant [Instance |
AbstractFactory A
AbstractFactory.Creator |A.copy
AbstractProduct A
ConcreteFactory Almpl
ConcreteFactory.Creator| Almpl.copy
ConcreteProduct Almpl

It is questionable whether this should be considered as an instance of the
AbstractFactory pattern. The intention of AbstractFactory is to provide a public
interface that is used to instantiate another class. This is clearly not the case if

both classes are the same. The same is true for other patterns - the separation of
responsibilities is a major objective for design patterns in general. The question
arises whether we should add this additional constraint to pattern definitions, e.g.
by introducing additional conditions such as AbstractFactory#AbstractProduct,
or whether we consider this as a general features patterns have. We opt for
introducing a separate concept that captures this distinction. We call a pattern
instance normal iff it is injective. This means that different participants are
mapped to different artefacts. In this terminology the code given in the last
example is a valid pattern instance, but not a normal pattern instance.

Even the number of normal instances found in medium sized software is sur-
prisingly high. In a program consisting of the JDBC API (from JDK1.4.2) and
the MySQL ConnectorJ version 3.0 implementation the tools finds 186 instances
of Bridge and 21 instances of AbstractFactory. This high number renders the re-
sults as almost useless. A detailed analysis shows that many instances can be
merged. For instance, consider the following two instances of AbstractFactory:
the class com.mysql.jdbc.jdbc2.optional.ConnectionWrapper (the concrete
factory) implements the interface java.sql.Connection (the abstract factory).
Therefore, it implements several flavours of the prepareStatement (this method
is overloaded) method (the creator) returning an instance of com.mysql.jdbc.
jdbc2.optional.PreparedStatementWrapper (the concrete product) implement-
ing the declared return type java.sql.PreparedStatement (the abstract prod-
uct). These two instances (there are 6 similar instances altogether) seem to be
variations of one instance. This instance is characterised by the variable bind-
ings for the abstract participants, i.e. the class templates and method templates
which have the abstract property set to the literal abstract.

In general, it seems to be useful to group pattern instances together. Such
aggregated instances facilitates the understanding of program design as they are
conceptually closer to the understanding software engineers have about design
patterns. An aggregation is defined by an equivalence relation ~ between pattern
instances, i.e. a relation satisfying the following conditions:

1. instance ~ instance reflexivity

2. instancel ~ instance2 = instance2 ~ instancel symmetry

3. instancel ~ instance2 and instance2 ~ instance3 =
instancel ~ instance3 transitivity

An aggregated pattern instance is then defined as a class of pattern instances
modulo such a relation. An equivalence relation can be easily defined by a se-
lection predicate for the pattern participants Select C Var(P). Two pattern
instances are considered to be equal iff the variable mappings for the selected
participants are the same.
instancel ~geject instance2 < Yo € Select : instancel(v) = instance2(v)
The most common selection predicates are:

1. All abstract participants. This aggregation identifies pattern instances with
the same specification part (bindings for abstract class and method tem-
plates) but different implementation parts (bindings for non abstract partic-
ipants).

2. All abstract classes. This aggregation identifies pattern instances with the
same bindings for the abstract class templates. For instance, consider two
AbstractFactory instances having the same abstract factory class with two
different (abstract) creator methods. Under 2. these two instances are con-
sidered to be equal, under 1. they are not considered to be equal.

Another useful aggregation not defined by a selection predicate is related to over-
loading: two instances are considered equal iff they map abstract class templates
to the same classes, and if method templates are mapped to methods with the
same name (but possibly different parameter types).

The following table shows the scan results obtained with the WOP client for
the JDBC API (from JDK1.4.2) + MySQL ConnectorJ 3.0 project.

A;: :Ej:;_ Bridge|Strategy|Adapter
No Aggregation 21 186 428 228
Normal Instances only 21 150 302 228
Group by abst. participants 17 48 109 1
Group by abst. classes 9 2 6 1

The fact that adapter all instances are aggregated into only one aggregated
instances is a consequence of adapter not having abstract participants at all.

5 Conclusion

In this paper, we have presented a novel approach to defining design patterns
based on the web ontology language. We have shown that this yields a descrip-
tion that can be used by clients to detect design pattern instances in software.
The inherent advantage of our approach is that this yields a definition of pat-
tern that is machine processable, but also suitable for a community to share
knowledge taking advantage of the decentralised infrastructure of the Internet.
The system of loosely linked ontologies and design pattern descriptions is what
we call the web of patterns. In order to become a reality, the following need
to be available: effective, scalable clients in various programming languages and
embedded in standard software engineering tools (Eclipse, Visual Studio), pat-
tern authoring kits facilitating the creation and publication of new patterns,
improved pattern documentation (for instance, SVG based UML diagrams at-
tached to patterns which can be instantiated for pattern instances), predefined
rule sets, and reasoners to select patterns. If successful, there could be a web
of refactorings as well. The ultimate use case would be as follows: a software
engineer tries to improve the design of a project, and presses the improve button
in his development environment (IDE). The IDE issues a query to a search en-
gine, and finds resources (RDF documents) describing refactorings suitable for
the respective program. Based on user specific rules, a (trusted) refactoring is
selected and applied. The user will be given a chance to customise, interrupt, or
undo the refactoring.

The existing pattern scanner does only find exact matches. This could be
generalised as follows: approximate matches could be detected by dropping cer-
tain constraints, or by relaxing the interpretation of certain constraints. For
instance, the ontology distinguishes only between private, public, and protected
methods. Some programming languages support further access modifiers like
“default” (package) which a client has to map to the concepts used in the ontol-
ogy. At this point applications have a certain level of freedom that will lead to
slightly different scan results.

The interpretation of the constraints in the programming language (Java in
our case) is done in Java classes. This association is currently hard coded in the
client, although it could be published on the web as well: by making statements
associating the properties used in the ontology with resources interpreting them
in a given application context (Java version 1.4+/ WOP version 0.9 client ar-
chitecture). These resources would be URLs pointing to jar files containing the
respective classes. Clients could integrate them using standard Java URL class
loaders. This would support a true detect, plug and play architecture that would
allow clients to process patterns defined using new constraints.

There is a rather large body of research in the area of design pattern descrip-
tion and detection. A wide range of formalisms are used to describe patterns,
including UML Profiles [5] and logic programs [12]. Eden [7,8] proposes a logic
based framework that allows precise definitions of patterns, pattern instances,
and pattern refinement. His higher order entities are used to address the prob-
lems which we are trying to solve with pattern aggregation.

The W3C has set up a working group to explore how semantic web technology
can be used in software engineering [19].

References

1. Agerbo, E., Cornils, A.: How to preserve the benefits of design patterns, Proceed-
ings of the Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 1822, Oct., Vancouver, Canada, 1998:134143.

2. Beck, K.: Smalltalk Best Practice Patterns, Prentice Hall. 1996.

3. Beyer, D., Noack, A., Lewerentz, C.: Simple and efficient relational querying of
software structures, Proceedings of the 10th Working Conference on Reverse Engi-
neering (WCRE 2003), pages 216225. IEEE Computer Society, 2003.

4. Dietrich, J. , Elgar, C.: A formal Description of Design Patterns using OWL, Pro-
ceedings ASWEC 2005, IEEE Computer Society, 2005.

5. Dong, J., Yang, S.: Visualizing Design Patterns With A UML Profile, Proceedings of

the IEEE Symposium on Visual/Multimedia Languages (VL), pp123-125, Auckland,

New Zealand, 2003.

The Dublin Core Metadata Initiative, http://dublincore.org/

7. Eden, A. H., Hirshfeld, Y., Yehudai, A.: LePUS - A Declarative Pattern Specification
Language, Technical report 326/98, Department of Computer Science, Tel Aviv
University, 1998.

8. Eden, A. H.: LePUS, A Visual Formalism for Object-Oriented Architectures, The
6th World Conference on Integrated Design and Process Technology, Pasadena,
California, June 2228, 2002.

B

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object Oriented Software, Addison-Wesley, 1994.

10. Grand, M.: Patterns in Java. A Catalog of Reusable Design Patterns Illustrated
with UML, Wiley, 1998.

11. The Java Beans Specification.
http://java.sun.com/products/javabeans/docs/spec.html.

12. Kramer, C., Prechelt, L.: Design Recovery by Automated Search for Structural
Design Patterns in Object-Oriented Software, Proceedings of the 3rd Working Con-
ference on Reverse Engineering (WCRE ’96) , 1996.

13. Mapelsden, D., Hosking, J., Grundy, J.: Design Pattern Modelling and Instanti-
ation using DPML, Proceedings of the Fortieth International Conference on Tools
Pacific. Australian Computer Society, 2002.

14. Web Ontology Language (OWL), W3C Recommendation 10 February 2004.
http://www.w3.org/2004/OWL/.

15. Patel-Schneider, P. F., Hayes, P., Horrocks, I. (eds.): OWL Web Ontology Lan-
guage Semantics and Abstract Syntax. W3C Recommendation 10 February 2004.
http://www.w3.org/ TR /owl-semantics/.

16. The Protégé Ontology Editor and Knowledge Acquisition System.
http://protege.stanford.edu/.

17. Resource Description Framework (RDF), W3C Recommendation 10 February
2004, http://www.w3c.org/RDF/.

18. The Rule Markup Language project. http://www.ruleml.org.

19. Semantic Web Best Practices and Deployment Working Group: Software Engineer-
ing Task Force (SETF). http://www.w3.0org/2001/sw/BestPractices/SE/.

20. Stelting, S., Maassen, O.: Applied Java patterns. Prentice Hall PTR, 2001.

21. Taibi, T., Ngo, D.C.L.: Formal Specification of Design Patterns A Balanced Ap-
proach, Journal of Object Technology, vol. 2, no. 4, 2003, pp. 127-140.

22. Uschold, M.: Where are the Semantics in the Semantic Web? AI Magazine, v.24
n.3, p.25-36, September 2003.

23. Vlissides, J.: Multicast. C++ Report, vol. 9, no. 8. New York, NY:SIGS Publica-
tions, 1997.

24. The WOP Project. http://www-ist.massey.ac.nz/wop/

